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The stability of a laminar  boundary layer of a power-law non-Newtonian fluid is studied. The 
validity of the Squire theorem on the possibil i ty of reducing the flow stability problem for a 
power-law fluid relat ive to th ree-d imens iona l  dis turbances to a problem with two-dimensional  
dis turbances is demonstra ted.  A numer ica l  method of integrating the genera l ized O r r -  
Sommerfeld  equation is constructed on the basis of previously proposed [1] t ransformat ions .  
Stability charac te r i s t i c s  of the boundary layer  on a longitudinally s t reamlined semiinfinite 
plate are  considered.  

In this work, we will study the stability of a laminar  boundary layer  of fluids with a power rheological  
law, for which the relation between the s t r e s s  tensor  ~- ij and strain rate tensor  6ij has the form 

I+ F �9 ij = --  6~jp -k k e~lez~ -K eij, (1) 

where i, j =1, 2, 3; k is the consis tency index; n is the non-Newtonian index; p is p res su re ;  and 5 [j is the 
Kroneeker  symbol.  We will assume that media corresponding to n > 1 are dilating, while media  with values 
n< 1 are  pseudoplastie,  the lat ter  including, in par t icular ,  aqueous solutions of high polymers .  The case n = l  
cor responds  to a Newtonian fluid. 

The flow stability of a power- law non-Newtonian fluid has been considered for a plane channel in [2]. 
The stabili ty of the boundary layer  of a power-law fluid was studied in [3, 4] using asymptot ie  methods.  The 
er i t ical  Reynolds numbers  for  0.2-<n-<2 was est imated in [3] using an approximate formula  derived 
there .  Neutral stabil i ty curves for  dilating fluids have been construeted in [4]. Some resul ts  [3, 4] 
are  eontradietory in the range of values n > 1. This leads to the necess i ty  of a more  careful  determination of 
the stabili ty charac te r i s t i c s ,  which can be attained by numer ica l ly  integrating the stabili ty equations, in the 
cur rent  work, the stability of the boundary layer  of a power-law fluid is studied numeriea l ly  on the basis of a 
previous method [1]. 

Well-known differential motion equations of a power- law non-Newtonian fluid [5] are  obtained by sub- 
stituting Eq. (1) in a s t r e s sed  deformable continuum equation. Let us represent  a nonsteady disturbed flow as 
the sum of two flows, namely, a s teady main flow and small  disturbing flow. As usuai [6], we will assume that 
the main flow is laminar  and that the components of disturbed motion can be represented  in the form 

"~= u(g)e i(a ~+~)-i~ct; 

v--v(g)e it~.~+~z)-~a; 

where a and/~ are  rea l  values and c =Cr+iC i is complex. 

The disturbing motion is assumed to be three-d imensional ,  since it has been proved [7] that the Squire 
theorem does not hold in the general  case for  non-Newtonian fluids. 
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Fig. 1. The p a r a m e t e r  n increases  
inverse ly  to that indicated, i.e., the 
curve n =1.2 cor responds  to n = 0.2, 
etc.  
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We l inear ize  the dimensionless  differential  equations for  total  flow, subtract ing f rom ' them the main 
flow equations, obtaining 

i a R e u ( U  - -  c ) ~ v U ' R e ~ i a R e p = ( U ' )  '~ - l [nu"  - -  ( a 2 4 : ~ ) u  -~(n  - -  t ) i av '  ]-~(n -- t ) n ( U ' ) ' ~ - 2 U " ( u ' z r i a v ) ;  (2) 

i a R e v ( U  - -  c)+Rep' =(U') n-1 iv" --  ( a e + ~ 2 ) v + i a ( n  - -  l)(u' + iav) ]+2(n - -  l)(U')n-2U"v'; 

~ R e w (  v - -  c ) + ~ R e p = ( U ' ) " - l [ w  '' - -  ( ~ + ~ g w l + ( n -  l ) (U')~-~g"(w'+i~v);  ~(~zu+~w)+v'=O, 

_ z-n L n where U(y) is main flow rate ,  R e - p  Uchar cha r /k  is the general ized Reynolds number (p is fluid density). 
The pr imes  denote differentiation with respec t  to the dimensionless  t r anve r se  coordinate y. 

Thus, we have four equations to determine the four var iables  u, v, w, and p in the case of a th ree -  
dimensional disturbing motion. 

Equations (2), af ter  the t rans format ions  

-$=c, ~ u = ~ u + ~ w  , 
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take the f o r m  

i a R e u ( U  - - c )  + v U ' R e + i c c R e p = ( U ' ) ~ - l [ n u  '-' - -  a~u+(n--- - -  i)i~v' l+(n  - -  ~)n(U . . . . .  )'- -U (uv-'~-~uv),'~-" (3) 

" t ~  i r i~zRev(U - -  c ) + R e p ' = ( U ' ) ' ~ - l [ - v  '' - -  & ' v + i ~ ( n  - -  i ) (u '+ i~v) l+2(n  - -  I ) (U ' )~ -o 'U"v ' ;  ~uu-,-v =0.  

Equations (3) co r r e spond  to two-d imens iona l  dis turbing motion with Reynolds number  Re less  than 
Re in Eqs.  (2). The Squire t h e o r e m  for  a power - law non-Newtonian fluid t he re fo re  holds.  

In place of Eqs.  (2) we then cons ider  the two-d imens iona l  analog of Eqs.  (2), which is obtained if we 
se t  w = 0 and f~ = 0. We introduce a d imens ion less  s t r e a m  function of the dis turbing motion in the fo rm 

obtaining, a f t e r  some a lgebra ,  the genera l ized  O r r - S o m m e r f e l d  equation for  a power - l aw fluid, 

(u') ~-~ ((U,)~n (~w - - 2 C C  (4) (u - c) (C  - c ~ )  - u '~  = 

+ ~.~) + (n --  1) I2nU'U"~'" +[4~ ~ (U'p + nU'U'" + n(n - 2) (U'T1C 
+ 2 (n --  2) aW'U"~' + n~ ~ [U'U"' + (n - 2 )  (U"f] q~}}. 

When n =1, the equation turns  into the o rd inary  O r r - S o m m e r f e l d  equation for  a Newtonian fluid. The gen- 
e r a l i zed  Reynolds number  for  the case  of a boundary layer  is wr i t ten  in the f o r m  

Re = pUo - " ~ I k ,  

where  U 0 is the f r e e - s t r e a m  flow ra te  and 6 is l ayer  th ickness .  

The boundary conditions have the f o r m  

~(0)=~'(0)=0,  (5) 
~(~o)=(/(oo) =0.  

T r a n s f o r m a t i o n s  [1] p roposed  for  the o rd ina ry  O r r - S o m m e r f e l d  equation were  used in solving the p rob lem 
(4), (5) fo r  the e igenvalues .  

We define the function D i (i =1, 2, 3, 4, 5, 6) by the equations 

[%i Dt  Ti  e~'2' D~ r (f2 lcP'[ ~i" 

D~ = ]qD}, ~2., % 
IqDt (P~ ' D5 =[qvt ~-I qo[ q~, 

where  (Pi and g9 2 a r e  the two par t i a l  solutions of Eqs. (4) sa t is fying conditions (5). Then Eq. (4) can be r e -  
duced to a s y s t e m  of six o rd ina ry  di f ferent ia l  equations: 

D~ ~ D G D'~ = D~ + A D  4 + G D  I + B D  6, 

D2 = D~, D5 == D~ + A D  5 + B D  2 - -  ED~, 

D'3 = AD~ - -  G O  2 - -  E D  o, 9"6 = Do. + D 4, 

where  

A=2( I  - -  n ) U ' ( U ' ) - I ;  

[4_~_ ] ~ Re ( U -  c) (u') '-~; B -= i l  - -  n) + (n - -  2) (U") ~ ( U ' ) - 2  + U"(U')-~ + 2(z ~ + T 

G -~ 2 (l --  n ) ( n  - -  2) 0~2U"(U')-I; 

E -= (t - -  n) ~2 [U'" (U') - I  + (n - -  2) (U") 2 (U' ) -2I  - -  cd - -  i ~  Re (U') I - ~  [(U - -  c) a S + U"]. 

We obtain the s imple  condition DI(0) = 0 to find the e igenvalues .  We c a r r y  out the normal i za t ion  Zi = Di/D~ 
and e l iminate  Z 5 by in tegra t ing the s y s t em Z 5 = Z I Z  3 + Z ~ Z 6 ,  finally being left  with 

Z~ = 1 - - Z ~ ( Z 2 +  Z~), (6) 

Z'3 = AZ3 - -  GZo- - -  E - -  Z 3 (Z 2 + Z~), 

Z'~ -~ B -4- GZ1 + AZ4 + Z1Z 3 - -  Z]. 
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TABLE 1 

No. of 

y~g. 5 

i 
2 
3 
4 
5 
6 

C n 

0,6 0,506 
0,3 0,546 
0,2 0,579 
0,t 0,666 
005 0,780 

k 

0,736 
0,307 
0,173 
0,051 
0,010 
0,001 

Since the influence of v iscos i ty  is absent and, consequently, so are  the non-Newtonian proper t ies  
outside the boundary layer ,  the boundary conditions at infinity (5) can be ca r r i ed  over  to the external edge 
of the boundary layer  (y =1) in the usual fashion [4, 6]. We will write the boundary conditions in the form 

~"(l)+(i  +~z)qD'(l)+cz~(l)=O; 

~ " ' ( ~ ) + ~ " ( i ) = 0  

for  convenience in calculating values of Zi(1}. We set 

when y = l ,  obtaining the boundary conditions for  the sys tem (5}, 

1 . ( z  
ZI : - -  ! + a '  Z~ - = - -  f ~ ;  Z 3 = 0 ;  Z 4 =  - - a .  (7) 

Thus, the p rob l em has been reduced to a solution of the system (6) with the boundary conditions (7). The 
condition Z~(0} =0 can be made to hold by varying a ,  Re, and c and the eigenvalues are  thereby found. 

A se l f -consis tent  solution of the boundary- layer  equations of a power-law fluid for the case of plane 
longitudinal s t reaml ine  of a semiinfinite plate was used to determine the velocity profile.  The boundary-  
value problem for  the o rd ina ry  differential equation 

[F"ln-~F'" +FF'" =0, 

F(0)=0, F'(0)=0, F(o~)=i 

was numer ica l ly  solved using the method of group t ransformat ions  set forth in [8]. The calculated veloc-  
i t ies reasonably agree with those presented in [5]. 

Stability cha rac te r i s t i c s  of the boundary layer  of a power-law fluid for the range of values of the non- 
Newtonian fac tor  0.1 -<n-<l,  2, i.e., basical ly  for  pseudoplastic fluids of most  interest  f rom the pract ical  
point of view, were calculated based on this technique. Neutral stability curves are  depicted in Figs. 1 
and 2 (a* =a6*/6; Re* =Re6 */6;  where 6 * is displacement thickness}. 

The dependence of the general ized cr i t ica l  Reynolds number Re* on the pa ramete r  n is depicted in 
Fig.  3 (curve 1), in which the monotonically increas ing nature of this function is maintained as we pass 
through n -  1. Thus the resul ts  qualitatively agree with the previous [3] data obtained asymptot ical ly  (curve 
2}. Qualitatively sa t i s fac tory  coincidence is observedwhen 0.6 -<n -< 1. On the other hand, an ext remely  
substantial divergence of the curves  occurs  in the region of low n. Curves of equally increasing dis tur-  
bances ca lcu la tedfor the  boundary layer  of a power- law fluid when n = 0.5 (solid curves} and a Newtonian 
fluid (broken curves} for  identical c i a re  depicted in Fig. 4. 

The coordinates of points at which flow loses stabil i ty in the boundary layer  as a function of the 
f r e e - s t r e a m  flow ra te  U 0 for aqueous solutions of the high-molecular-weight  polymer  ET-597 were cal-  
culated based on our  resul ts ,  using previous [9] data. The family of curves constructed for  the different 
concentrat ions (Fig. 5} allows the stability of the boundary layer  of non-Newtonian power-law and New- 
tonian fluids to be graphical ly  compared.  Concentration C in percent,  the non-Newtonian factor  n, and con- 
s is tency index k[Hcn/m 2] for  the corresponding curves  in Fig. 5 are  depicted in Table 1. The value of k 
is replaced by the viscosi ty  of pure water  at 20~ when C =0 and n = ] .  It is c lear  in Fig. 5 that, in spite 
of the general  decreas ing  tendency for  stabili ty with increasing non-Newtonian propert ies ,  a region exists 
for low U 0 where the calculated points at which stabil i ty is lost for  the polymer  solutions is situated down- 
s t r eam f rom that of pure water .  Our resul ts  lead us to conclude that the non- Newtonian visco sity of high-poly-  
m e r  solutions exer ts  a destabilizing influence in the case of flow into the boundary layer .  
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C O N V E R G E N T  S H O C K  W A V E  

N O N H O M O G E N E O U S  M E D I U M  

IN AN IDEAL ELASTIC 

I .  V.  S i m o n o v  UDC539.374 

The boundary-va lue  p rob lem for  s y m m e t r i c  focusing of a shock wave in a medium with var iab le  
densi ty  under  a constant  load (model of a porous  body with var iab le  initial  velocity) is solved.  
The  solution asympto t ic  is studied. Focus ing  in a homogeneous medium has  been  prev ious ly  
studied [1]. One inve r se  p rob lem re la ted  to the choice of the opt imal  p r e s s u r e  conditions is 
examined.  Const ra in ts  on the appl icabi l i ty  of the model  a r e  touched on. 

Suppose a uni form load P0(t) is applied to the sur face  of a sphere  (cylinder,  layer)  whose initial density 
is a d i f ferent iable  function of the radius  [p =p( r ) ]  at a moment  of t i m e  t =0. We a s sume  that  the load ins tan-  
taneous ly  at tains a finite value p0(t) > 0 and does not i nc r ea se  any fu r the r  (the physical  meaning of this con-  
dition is that  of an explosion on the surface) ;  the medium is ideal (without tangent ia l  s t r e s s e s ) .  The densi ty 
of the medium at any point p 1 is se t  equal  to a constant (0 <p < p 1) and r ema ins  constant if the p r e s s u r e  at this 
point r eaches  values  a r b i t r a r i l y  g r e a t e r  than ze ro .  This  highly s impl i f ied  model  approx imate ly  desc r ibes  the 
behavior  of a body with va r i ab le  poros i ty  and uniform skeleton at high loads .  

A shock wave will  p ropagate  f r o m  the su r face  to the cen te r .  The focusing p roce s s  fo r  the shock wave in 
a homogeneous medium has been studied in [1]. The purpose  of the cu r r en t  r epor t  is to invest igate  the in- 
f luence of nonhomogeneity on the mot ion of the med ium behind the front  of a convergent  shock wave.  In p a r -  
t i cu la r ,  the var ia t ion  in the degree  of cumulat ion of a shock wave is of some in te res t .  It m a y  be expected that, 
as  in the case  of an ideal gas of va r i ab l e  densi ty  [2], the choise of p (r) can e i ther  weaken o r  intensify accumu-  
lat ion.  

The following motion and continuity equations hold within the region bounded by the moving sur face  r = 
Rl(t) and the shock wave f ront  r =R(t): 
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